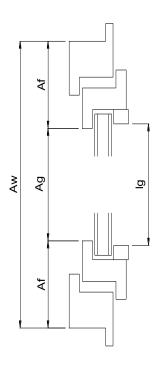
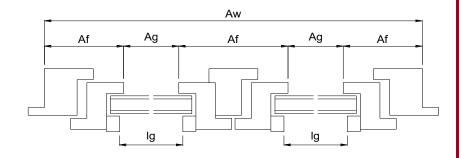


(II) ufme CALCUL THERMIQUE

FT 01


Page n° 1/2


Date: Octobre 2010

MENUISERIE NUE (BOIS, PVC, ALU)

CALCUL DU COEFFICIENT DE TRANSMISSION THERMIQUE (U_w) DE L'ELEMENT DE REMPLISSAGE DE LA BAIE

Le calcul des coefficients thermiques des menuiseries sera réalisé en référence aux règles Th-U 3/5.

$$U_{W} = \frac{U_{f}A_{f} + U_{g}A_{g} + \psi_{g}I_{g}}{A_{f} + A_{g}}$$

- U_w = Coefficient de transmission thermique surfacique de la fenêtre nue, en $W/(m^2.K)$.
- U_g = Coefficient surfacique en partie centrale du vitrage, en W/(m².K).
- Ψ_g = Coefficient linéique de la liaison vitrage/encadrement, en W/(m.K).
- $U_f =$ Coefficient surfacique moyen des profilés, en W/(m².K).

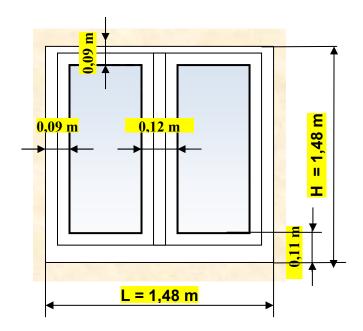
Pour les menuiseries Alu et PVC ce coefficient moyen est donné dans les DTA pour les dimensions (L xH):

Fenêtre 1 vantail	0.95 x 1.48
Fenêtre 2 vantaux	1.48 x 1.48
Porte fenêtre 2 vantaux	1.48 x 2.18

- Nota: les dimensions hors tout sont prises hors recouvrement des dormants
- Surface de la fenêtre hors tout (A_f + A_g) $\mathbf{A}_{\mathsf{w}} =$ sauf les recouvrements, en m².
- Surface des profilés correspondant à $A_f =$ la plus grande surface projetée, en m². (Les montants seront filants)
- Plus petite surface projetée du vitrage, $A_g =$ en m² (faire abstraction des joints).
- $I_g =$ Plus grand périmètre visible du vitrage, en m (faire abstraction des joints).

CALCUL THERMIQUE

FT 01


Page n° 2/2

Date: Octobre 2010

MENUISERIE NUE (BOIS, PVC, ALU)

EXEMPLE DE CALCUL

Nota: Fenêtre à la française à deux vantaux équipée d'un double vitrage 4/16/4 avec remplissage argon à 85% et intercalaire en aluminium.

Fenêtre nue:

 $U_w = (1,8x0,68)+(1,1x1,51)+(0,04x7,48) = 1,45 \text{ W/m}^2.\text{K}$ 0,68+1,51

soit: 1,4 W/m2.K

$$A_w = L 1,48 \text{ m x H } 1,48 \text{ m} = 2,1904 \text{ m}^2$$

 $A_g = 1,48-(0.09+0.12+0.09) \times 1,48-(0.11+0.09)$ soit A_g 1,18 m x 1,28 m = 1,5104 m²

 $I_g = ((1,18 \text{ m} + (1,28 \text{ m x2})) \text{ x 2} = 7,48 \text{ m}$

 $A_f = 2,1904 \text{ m}^2 - 1,5104 \text{ m}^2 = 0,68 \text{ m}^2$

1,1 W/(m².K) selon source CEKAL. Ug =

Ψ_g = 0,04 W/(m.K) selon la norme NF EN ISO 10077-1.

1,8 W/(m².K) selon le DTA du système. Uf =

Nota: Pour le U_f, des valeurs tabulées forfaitaires sont données par défaut dans les Règles Th-U Fascicule 3/5 « Parois Vitrées ».